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The extension of the classic Rayleigh-Be'nard problem of a horizontal layer heated 
from below to the three-dimensional convection in rectangular boxes is dealt with in 
this paper both numerically and experimcntally. Also discussed is the influencc of 
shear flows in tilted boxcs and the transition to time-dependent oscillatory 
convection. Thrcc-dimensional numerical simulations allow the calculation of 
stationary solutions and the direct simulation of oscillatory instabilities. We limited 
ourselves to laminar and transcritical flows. For studying the particular charac- 
teristics of three-dimensional convection in horizontal containers. we carefully 
selected two container geometries with aspect ratios of 10 : 4 : 1 and 4 : 2 : 1. The onset 
of steady cellular convection in tilted boxes is calculated by an iterative application 
of a combined finite-difference method and a Galcrkin method. The appearance of 
longitudinal and transverse convection rolls is determined by means of inter- 
ferometrical measuring techniques and is compared with the results of the linear 
stability theory. The spatial flow structure and the transition to oscillatory 
convection is calculated for selected examples in the range of supercritical Rayleigh 
numbers. Experimental investigations concerning the stability behaviour of the 
steady solutions with regard to time-dependent disturbances show a distinct 
influence of the Prandtl number and confirm thc importance of nonlinear effects. 

1. Introduction 
Thermal convection is an important mcchanisrn of mass and heat transfer in 

nature and technology. Numerous applications are found in geophysics and 
astrophysics, meteorology and many practical systems. Not only are the atmospheric 
structure of planets, the granulation of the sun, the earth's magnetic field and 
continental drift determined by thermal convection, but also energy storage in large 
containers, reactor safety and reactor waste storage, solar collectors, crystal growth 
for microprocessors, solid-liquid interface dynamics and microstructures in foundry 
and technology. 

The convective mass and heat transfer is determined in a large number of the 
practical applications by the buoyancy force, diffusion and chemical reactions. The 
classic Rayleigh-Be'nard problem of horizontal fluid layers heated from below offers 
a first approach to highly complex convective flow processes. This problem is 
characterized by the thermally unstable stratification in the gravitational field. The 
basic state is defined by the heat conduction. If the temperature difference between 
the horizontal boundaries exceeds a certain critical value, buoyancy-driven thermal 
cellular convection will begin, combined with an increase in the heat flux through the 
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FIGURE 1 .  Planform of the Rayleigh-BBnard convection. ( a )  Top view. flow visualized by 
aluminium powder. ( b )  Differential interferogram. (c) Principle sketch. 

fluid layer. Figure 1 shows the top view of the periodic flow field and a differential 
interferogram, which visualizes a cross-section of the flow pattern. If we assume rigid 
horizontal boundaries as in figure 1, longitudinal convection rolls appear. The fluid 
mechanical foundation of this classical stability problem, the derivation of the basic 
equations, the possible stationary and time-dependent convection configurations are 
described, for example, in the books and survey papers by Busse (1978), 
Chandrasekhar (1961), Gershuni & Zukhovitski (1976), Joseph (1976), Koschmieder 
(1974), Normand, Pomeau & Velarde (1977), Palm (1975), Roberts (1975), Swinney 
& Gollup (1981), Turner (1973) and Zierep & Oertel (1982). 

The stability diagram from the linear stability theory (Chandrasekhar 1961) shows 
that thermal convection begins above a critical Rayleigh number with a 
characteristic wavenumber a,. We call the Rayleigh-BBnard problem an absolutely 
unstable stability problem, since each local disturbance stretches progressively into 
the entire flow field. Accordingly, the temporally amplified stability theory describes 
the onset of cellular convection. 
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The basic phenomena of the Rayleigh-BBnard problem in an almost infinitely 
extended horizontal fluid layer are widely known. The influence of vertical 
boundaries and the flow pattern of thermal convection inside enclosures are of 
practical interest for engineering applications, in particular. This leads to the 
extension of the classic Rayleigh-Bdnard problem to the convection in closed boxes. 
The stabilizing effect of vertical boundaries on the onset of cellular convection due 
to the additional friction is well understood within the framework of the linear 
stability theory. This is shown, for example, in the works of Catton (1978), Davis 
(1967), Stork & Muller (1972) and Zierep (1963). 

Less known, however, is the three-dimensional structure of the nonlinear thermal 
cellular convection in containers and the area of influence of the vertical boundaries. 
There are conflicting results even about the wavelength selection of convection rolls 
in almost infinite horizontal fluid layers. Koschmieder (1974) defined this as a central 
question in the Rayleigh-Be‘nard problem. The three-dimensional reorientation of 
the convection rolls in containers with increasing heating rate has not been made at 
all clear. The experiments show an increase in the wavelength. Neither theoretical 
nor numerical simulation calculations can clarify this condition unequivocally. In 
particular, the highly complex structure of time-dependent oscillatory convection in 
boxes and the transition to thermal turbulence have been little invest,igated. (See, for 
example, the publications of Curry et al. 1984 and Kolodner et al. 1986). However, 
oscillatory instabilities in boxes proceed differently from Busse’s (1978, 1981) 
published results in infinitely extensive layers, in the particular aspect of the 
controlled initial condition because here the flow configuration is mainly determined 
by the boundary conditions. The great number of possible bifurcation solutions 
dependent on the initial and boundary conditions increases. The limited geometry 
imposes an additional order principle. This has a quite decisive influence on the 
transition to time-dependent convection. 

The convection in tilted boxes is an important extension of the Rayleigh-Bknard 
problem, and has both basic and practical significance. In  a very simple manner, it  
permits the study of the combined action of shear flows and thermal instabilities. 
This has practical significance for the understanding of convective processes, 
including those in the earth’s atmosphere, oceans and seas. Convection in tilted boxes 
gains particular technical importance for the thermal design of solar energy 
collectors. Accordingly there have been a large number of articles published on this 
subject ; the common goal of most investigations has been the determination of the 
Nusselt number as a function of the relevant parameters (Rayleigh number, angle of 
inclination and aspect ratio). 

The fluid mechanical aspects of convection in tilted geometries have been less 
investigated, particularly the complex stability mechanisms which, depending on the 
respective characteristic non-dimensional parameters, determine the flow structure 
and thereby help to interpret the functional dependence of the heat flux on the 
important parameters. 

A number of articles are important for discussing these problems. Unny (1972) and 
Hollands & Konicek ( 1973) have theoretically and experimentally determined the 
basic flow’s onset of instability in quasi-infinitely extended layers. Ruth et al. 
(1  980 a ,  b )  investigated the supercritical regime, using visualization techniques to 
give an insight into the flow structure. I n  addition, Ruth et al. (1980b), Clever & 
Busse (1977) and Nagata & Busse (1983) have investigated the transition to 
secondary and tertiary instabilities. 

In infinitely extended layers and for small Rayleigh numbers, it is possible to 
y FI, >I IS2 
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define the basic state by means of a cubical velocity profile $nd a linear temperature 
distribution T(z )  (conduction regime). The stability problem becomes far more 
complex in containers with finite extension. The basic state becomes three- 
dimensional due to the deflection of the flow a t  the ends and the influence of the 
lateral walls. In  a first systematic investigation of this subject, Hart (1971) studied 
the onset of instability of the basic flow in shallow boxes for the medium water. The 
influence of the lateral walls was still slightly noticeable at the chosen aspect ratio of 
25 : 12 : 1 and 37 : 17 : 1. The onset of longitudinal rolls and transverse travelling waves, 
as well as the transition to turbulence, are summarized in a stability diagram. 
Comparable investigations for air were carried out by Linthorst, Schinkel & 
Hoogendoorn (1981), whereby the aspect ratio was additionally varied in the range 
h,:h, = 7 :  1 to 1 :  1. Ozoe et al. (1977, 1983) have carried out theoretical and 
experimental investigations, mainly of long channels and containers with small 
aspect ratios, discussing in particular the thrcc-dimensional flow structure. The 
calculation of particle path lines for selected parameters gives an insight into the 
complex spatial flow structure. 

The basic state, defined in tilted boxes by a three-dimensional velocity and 
temperature field, must be known prior to carrying out stability investigations. Only 
in shallow boxes is it possible to approximate this basic state by means of an 
analytical approximate solution (Hart 1971). It is not possible to make an analytical 
description of the basic flow in all other cases, a fact which makes the stability 
calculation much more difficult. A suggestion for solving this problem is made within 
the framework of this paper. Critical Rayleigh numbers are calculated for two 
different Prandtl numbers as a function of the container inclination by iterative 
application of a finite-difference method and a Galerkin method. The extent to which 
the critical Rayleigh numbers, calculated under the assumption of linear stability 
theory, agree with the stability limits observed in the experiment is also investigated. 

In  closed boxes, there is an intricate superposition of basic flow and transverse or 
longitudinal convection rolls. The resultant three-dimensional flow is calculated by 
means of a finite-difference method. Finally, the transition to time-dependent 
solutions is experimentally investigated for two Prandtl numbers, and the results are 
summarized in stability diagrams. 

The aim of this article is to investigate the influence of latcral walls on the problem 
of the Rayleigh-Bdnard convection in horizontal and tilted boxes. The following 
questions are discussed : 

(i) The influence of shear flows on the stability behaviour of cellular convection in 
tilted boxes. Here the novel aspect is the combination of a finite difference method 
and a Galerkin method in solving the stability probleni theoretically. In  this way the 
three-dimensional naturc of the basic flow can be introduced in the stability 
calculations. 

(ii) The influence of lateral walls and shear flows on thc three-dimensional flow 
structure in the supercritical regime. 

(iii) The transition to time-dependent solutions as a function of the angle of 
inclination and for three different Prandtl numbers, confirm the importance of 
nonlinear effects. 

Special attention is paid to the interaction between experimental measuring 
techniques and the numerical approach to such a complex problem as thermal 
convection in closed boxes. Many aspects of the dynamics of nonlinear convection 
systems have been reported by other authors. Here, however, they are not reported 
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FIGURE 2.  Principle sketch of the box and coordinate system. 

because the connection between the temporal structure in the phase and spatial 
structure in the physical space, for three-dimensional convection flows in enclosed 
boxes, is not obvious; Oertel (1984). 

2. Numerical simulation 
2.1. Basic equations 

In  the case of the Rayleigh-Be'nard convection of a horizontal layer heated from 
below, we can neglect the kinetic and potential energy and the dissipation in 
comparison with the internal energy. We assume a Newtonian medium and introduce 
the Boussinesq approximation. This means that all fluid properties, the viscosity v ,  
thermal conductivity h and density p, are assumed to be constant. Only the 
temperature dependence of the density in the buoyancy term causing thermal 
convection is taken into account. This produces the following system of basic 
equations : 

1 v-v = 0,  

=-Vp+AV+RaTk, 

aT 
at 
- + ( V *  V )  T = AT, 

Ra = a .  g(T, - T,) h,3 , P r = - .  u I  
V K  K I  

All quantities have been made dimensionless by scaling lengths with the height of the 
fluid layer h,, velocities v = (u, v ,  w) with K / h Z ,  where K is the thermal diffusivity, time 
with h i / K ,  temperature with the temperature difference between the horizontal 
boundaries T,-T, and pressure with p u K / h : .  The Prandtl number Pr and the 
Rayleigh number Ra are the dimensionless parameters with the gravitational 
constant g ,  and a the thermal expansion coefficient. k = (1 cos6,0,1 sinS) denotes 
the unit vector. In the tilted box we limit ourselves to the case of a turn round thc 
short container axis (see figure 2 ) .  

9-2 
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We perform a perturbation analysis of the heat conduction condition for calculating 
the onset of steady cellular convection in the case of horizontal fluid layers. At the 
onset of convection, the velocities and temperature derivatives are small, and the 
nonlinear terms of the momentum and energy equations can thus be neglected. This 
assumption enables us to produce the steady, linear basic equations for the 
disturbance variables v * ,  T * ,  p* .  

v - v *  = 0, 

0 = - Vp* + An* + Ra T*k(Oo), 
-W = AT*. 

We assume the following boundary conditions for rigid and isothermal surfaces 

In a tilted box, there is always a basic flow present for each Rayleigh number other 
than 0 ; this basic flow is then eliminated using the following ansatz : 

v = v , + v * ,  \ 

i T = To+T*, 

P = P,+P*, 

To = T ( Z ,  y, Z )  -Pz (p  = 1) .  

(2.4) 

The index '0 '  indicates the basic state, which is separated as regards the temperature 
into one part caused by the basic flow ( T ( x ,  y, z ) )  and one caused by heat conduction 
( P z ) .  If we insert this formulation into the system of basic equations (2.1), we obtain 
the following set of equations for the basic solution and perturbation equations : 
( a )  Basic solution 

v - v ,  = 0 ,  

I 1 (3 + ( v 0 .  V )  v,) = - V p ,  +Avo + Ra,T, k ,  
Pr at 

~ + ( U , . V ) T ~  =ATo.  
at J 

(6) Perturbation equations 

I v . v *  = 0 ,  

- -+ ( v * *  V )  v0 + ( v0 .V)  V* = - Vp* + AD* + Ra k T * ,  
Pr [e,* at 1 

(2.5) 

aT* 
~ + (v* - V )  T + ( V,  * V )  T* - w = AT*. 

at 

Provided the main interest lies in the onset of cellular convection, the nonlinear 
terms ( v* -V)v*  and ( v* .V)T*  of the perturbation variables can be neglected. 
However, the equation still contains the coupling terms between basic solution and 
perturbation variables. This means that the basic flow's velocity and temperature 
field have to  be known before the stability calculation can be carried out. 
Furthermore, the time derivatives av*/at and aT*/at are considered to  be equal to 
zero, when searching for steady solutions. 
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2.2. Numerical methods 

The basic equations for the stationary and oscillatory convection in horizontal and 
inclined boxes have been solved by an explicit finite-difference method. The papers 
by Lipps (1976) and Oertel (1979) provide the basis of the three-dimensional 
difference method employed. The explicit Dufort-Frankel scheme described in the 
book by Richtmyer & Morton (1967) with second-order truncation error is applied. 
The nonlinear terms in the momentum and energy equations are represented by a 
difference scheme proposed by Piacsek & Williams (1970). A Poisson equation for the 
pressure is solved numerically, using thc procedure described by Roache (1972). If 
the momentum equations are differentiated, the sum of these equations leads to the 
following pressure equation : 

( a x a y  ax aZ ay ax axay  ax aZ ay aZ az 1 ) (E ' aT 
(2.7) 

The pressure field a t  every timestep is calculated implicitly by means of a method of 
cyclic reduction described by Schumann (1976). 

The calculation method starts with the cigenfunctions of the linear stability 
problem, as described in 92.1, applying the Galerkin method of Kessler, Dallmann & 
Oertel (1983). This procedure corresponds to the experiment, since the cellular 
convection arises from a steady state of periodic velocity and temperature 
distribution in the x- and y-directions. The calculation method was optimized as 
regards the sizes of the grid intervals, and works with automatically controlled length 
of time intervals. 

Particular attention was paid to ensuring the correct timestep in the numerical 
simulation calculation. Fundamental investigations by Kirchartz et al. (1982) have 
shown, by comparison with the experimental time-based increase of the flow 
amplitude of convective instabilities, that  the applied numerical method is 
sufficiently accurate. This is a basic presupposition for the numerical calculation of 
time-dependent convection flows. 

In  the regime of supercritical cellular convection, the calculations were carried out 
for two different container geometries. The intermediate aspect ratio h, : h, : h, = 
10:4: 1 is selected to obtain a well-defined flow pattern, which in the central part of 
the container can be assumed as a nearly two-dimensional flow. I n  the neighbourhood 
of the lateral walls, however, three-dimensional effects will be dominant and will, as 
shown later, significantly influence the stability mechanisms. For the time-consuming 
simulation of the oscillatory convection, a second smaller aspect ratio box of 
h, : h, : h, = 4 : 2 : 1 is selected. The number of grid points differed accordingly, 
between 81 x 33 x 17 for the larger and 41 x 21 x 17 for the smaller box. 

The majority of the three-dimensional numerical calculations were carried out on 
the vector computer CYBER 205 of the University of Karlsruhe, using a nearly full- 
vectorized computer code. For a domain of 41 x 21 x 17 grid points a c.p.u.-time of 
110 milliseconds per timestep is needed. The steady state, for not too high Rayleigh 
numbers (Ra < 10000), is reached after 300-600 timesteps. 

The finite-difference method is used to calculate the three-dimensional flow 
structure in the supercritical regime. A Galerkin method, briefly described below, is 
used to solve the linear stability problems for both the horizontal and the tilted box. 
In contrast to figure 2, the origin of the coordinates is now placed at the centre of the 
box. 

a u a v  a u a w  a v a w  a v a u  awau a w a v  
A p = 2  --+--+----------- +Ra -sinb+-cosb . 
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The unknown functions for the perturbation variables velocity u*, temperature 7’” 
and pressure p”  are expanded into complete sets of functions Fj, Gj and H,,  aj, 6, and 
cj being the expansion coefficients yet to be determined. 

N M L 

U* = C ajFj(x,y,z), T” = C bjQj(x,y,z),  p” = C cjHj(x,y,z).  (2.8) 

The trial functions are chosen in such a manner as to  fulfil the boundary conditions 
and the continuity equation while eliminating the pressure term in the momentum 
equation. 

If we introduce the ansatz (2.8) into the linear momentum and energy equations 
(2.6), then, as we can only expect an approximate solution, the sum of all terms will 
be e =# 0. We trhus obtain the two error functions, E~ for the momentum equation and 
c2 for the energy equation. 

j=  1 j=1 j=1 

Bkj = kF,G,dV, s 
s Chi = G,(F,..V)TdV- 

I L l N  l N  C ajAFj$Rak C bjGj- C cjVHj-- 
j-1 j = 1  j=1 Pr j=1 Pr j=l 

N N 

uj(F,.V)uo-- C aj(v,.V)F, = e l ,  

N M M M 

C aj(Fj.V)T+ C bj(vo-V)Gj-  C ajezFj- C bjAGj = e2. 
j=1 j=1 j=1 j=1 

(2.9) 

The Galerkin method requires that E ,  be orthogonal to each of the N trial functions 
F,, and that c2 be orthogonal to the corresponding trial functions G,. For this 
purpose, the scalar product between error function and trial function is made, and 
the equations are integrated over the considered volume. The result is a system of 
N +- M homogeneous, linear algebraic equations for the unknown coefficients aj  and 
bj. By applying the continuity equation and Gauss theorem, it can be shown that the 
pressure term is: 

) ( 2 . 1 2 )  

(2.10) 

The definitive Galerkin equations in matrix notation are : 

A”a+ Ra B N M b  = 0,  C M N a +  D M M b  = 0 ,  (2.11) 

a = (a l ,  ..., a N )  and b = (b l ,  ..., b,) are the vectors of the unknown expansion 
coefficients. The elements of the matrices A” BNM C M N  arid D M M  are made up of the 
following terms : 

Dkj = G,(V,,*V)G,dV- G,AGjdV. I I J 
The Rayleigh number is the parameter of this system of equations. When the 
determinant of the coefficient matrix vanishes, the system of equations has a non- 
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trivial solution. The determinant’s zero is approximated by means of quadratic 
interpolation. Thus, the smallest Rayleigh number found represents the critical 
value required for the onset of cellular convection. 

By introducing the critical Rayleigh number obtained into the Galerkin equations, 
and by employing Gauss elimination procedure, i t  is possible, for instance, to 
determine the vectors a and b up to a constant factor. Once introduced in the 
relations (2.8), we obtain the eigenfunctions for velocity and temperature. These are 
then chosen as the initial distribution for application of the difference method to 
supercritical flow conditions. 

The successful application of the Galerkin method depends on the appropriate 
selection of the trial functions for velocity and temperature. For the velocity, we use 
the following ansatz for a non-divergent vector field : 

Motion in the (x, 2)-plane : basic flow and transverse rolls 

Motion in the (y, 2)-plane : longitudinal rolls 

F i = V x ( & . e , ) =  

(2.13) 

(2.14) 

II;. and q5i are three-dimensional scalar functions, separated according to the three 
spatial coordinates. 

$j = &,(4 S*,(Y) h,(z), 4j = gpj(x)fqj(Y) h,(+ (2.15) 

The integer indices p j ,  qi and ri are varied independently of each other. The functions 
f and h, as well as their derivatives, must be zero at the walls in order to fulfil the 
boundary conditions. These requirements fulfil the ‘ Beam-Functions ’ described in 
the paper by Harris & Reid (1958). 

Even function 

cos h(A, x) cos (A, x) - 
cos h(iA,) cos ($A,) . Crn(x) = 

Odd function 

sin h(pm x) 
sin h(ipm) sin ($A,) ’ 

sin (pm x) - Sm(4 = 

(2.16) 

(2.17) 

A ,  and p, are chosen in such a manner as to fulfil the above requirements. For 
reasons of symmetry, when applying the Galerkin method, we locate the origin of the 
system of coordinates in the middle of the box (contrary to figure 2 ) :  

Trigonometrical functions are sufficient for the temperature expansion, since only 
the perturbation temperature at the walls has to vanish. 

All possible combinations of even and odd function systems must be considered in 
the formation of the matrices (2.12), as must the formulations for the basic solution, 
which are likewise made up of several function systems. Solving the system of 
equations thus created requires a great deal of effort. Therefore, we only consider 
those function systems which are physically reasonable, or those which have an 
influence on the eigenvalue. This selection was carried out with the aid of test 
calculations. 
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The following function systems are used: 
Basic flow : 

cos((2ri-1)x2)  

( p j = l  ,..., o ; ~ . = I ; ~ . = I ) , '  3 3 

Qj2) = cos 

I ~ i = c = i ( ~ ) c o s ( ( 2 Y , - l ) -  G,(z) (pi= 1 ,  ..., 9 ; q . =  3 l ; r . =  3 I), 
xy) h Y  

(2.18) 

Transverse rolls (odd number of rolls) 

Longitudinal rolls (even number of rolls) 

( p j =  1 , 2 , 3 ; g i =  1 ,..., 4 ; r j =  1 , 2 , 3 ) ,  

I $j4) = Srj(x) (pi = 1 , 2 , 3 ;  qi = 1, ..., 4; ri = 1 ,2 ,3 ) ,  

( p i =  1 , 2 , 3 ; q j =  1 ,..., 4 ; r j =  1 ,2 ,3) . . ]  

The basic state a t  the critical point must be known in order to calcula.te the onset of 
cellular convection in the tilted box using a Galerkin method. This basic state, 
however, is itself a function of the Rayleigh number sought, and cannot bc 
analytically specified in the case of closed containers. To solve this problem, we 
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1 I I 

FIGURE 3. Cross-section of the convective apparatus. 
I 

propose iterative application of a combined finite-difference method and a Galerkin 
method. 

The eigenvalue calculation a t  a given angle of inclination can be described as 
follows : first, the basic flow is calculated for an estimated Rayleigh number with the 
aid of a finite-difference method. The first approximation for the critical Rayleigh 
number is based on the known experimental results. Moreover, starting from S = Oo, 
the stability curve is calculated in small angle steps, so that we can always be 
guided by a neighbouring eigenvalue. The velocity and temperature field of the 
basic solution calculated in discrete points is represented in the form of the 
function systems (2.18), using the least squares method. The calculated coefficients 
ui ( j  = 1,  . . . , 9 )  and bi ( j  = 1,  . . . , 12) required for the basic solution are introduced 
in the coupling elements between basic flow and cellular convection of the 
Galerkin method. The second approximation for the critical Rayleigh number is 
obtained as a result of the eigenvalue calculation. The iteration procedure is inter- 
rupted when a given approximation level for the calculation of the critical 
Rayleigh number is reached. The number of iterations should be kept within limits, as 
the method is very time-consuming. If the first approximation for the Rayleigh 
number is selected carefully, its value can be determined to within less than 
1 YO after only 3 iterations. 

3. Experiments 
The experiments serve to test the physical models and permit a yuantitative study 

of possible steady and time-dependent flow patterns appearing as a function of 
Rayleigh and Prandtl numbers, angle of inclination and aspect ratio. 

Figure 3 shows the cross-section of the test cell. It consists of two horizontal, 
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perfectly-conducting copper plates. The lower plate is electrically heated by a heater 
foil, while the upper is kept a t  a constant temperature by means of a thermostat- 
controlled water bath. Using thermistors, the temperature difference between the 
two copper plates can be measured to within & 0.005 K. Each plate temperature can 
be adjusted to within kO.01 K (heating) and k0.02 K (cooling) and kept constant 
over a long period. The mean temperature in the test cell is adjusted to room 
temperature to minimize the heat exchange between test cell and environment. Only 
in the case of the sensitive measurements with nitrogen as test fluid was the test cell 
vacuum-isolated. The height of the test cell was chosen in such a way, considering the 
test fluid to be used and the Rayleigh number regime to be investigated, as to fulfil 
the assumptions of the Boussinesq approximation, meaning that the variation of the 
relevant fluid properties over the height of the test cell should not exceed 10%. 

The glass borders were made of quartz or plate-glass panes to adapt to optical 
measuring techniques. These glass borders, together with the test fluid used, 
determine the thermal boundary conditions. The thermal boundary condition can be 
classified using the definition of a wall admittance parameter C, proposed by Catton 
(1978) (C = A,, . h,/h, ' d ,  with A,, and A, the heat conductivities of the fluid and the 
wall respectively and d, the thickness of the lateral walls.) In  our experiments the 
following values for C exists: C (air/glass) = 0.014, C (silicone oil/glass) = 0.083 and 
C (water/glass) = 0.342. These values of C indicate that the assumption of perfectly 
conducting sidewalls is fulfilled in the experiments especially for the test fluids air 
and silicone oil and approximately also for water. 

Several optical measuring techniques are used to investigate the various steady 
and time-dependent convection processes. These allow contactless and thus 
perturbation-free investigation of flows in transparent media. This is a necessary pre- 
condition for quantitative investigation of absolutely unstable stability problems. 
Thus, not only flow visualizations are possible, but also quantitative statements 
about density and velocity fields. 

Interferometrical methods are useful for studying convective flows with typical 
density and temperature distributions. The differential interferometer used in this 
work proved extremely advantageous in the above investigations. Not only is it 
insensitive to vibrations and easy to adjust, but its sensitivity can be adapted to the 
various test fluids by simply exchanging the beam splitting components. 

Figure 4 ( a )  shows the principal set-up of the differential interferometer used. The 
light source Q delivers monochromatic light, which is polarized a t  45" (Polarizer PI) 
and meets on the Wollaston prism W,. Each light beam is here split up into two 
beams polarized in perpendicular directions. These cross {be test region M with a 
constant beam separation e .  This beam separation e determines the sensitivity of the 
interferometer and can be modified by choosing different Wollaston prisms. After 
recombination in prism W,, their 45" components are finally brought to interference 
after passing the polarizer's plane I?,. The objective 0 produces a picture of the test 
cell which is focused on the film screen P. With sufficiently large density gradients, 
a system of interference fringes is produced that permits quantitative evaluation of 
the integral density distribution. 

Greater sensitivity, as required, for instance, for measurements in gas, is obtained 
with a special laser-differential interferometer (figure 4h) which differs from the total- 
field differential interferometer in two design features. A laser L (HeNe Laser, 5mW) 
is used as light source, its light beam being focused on the measuring plane M. The 
interference signal is measured with a PIN diode (PI). This allows measurement of 
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Q Pi 0 W, +A 0, M 0, W, P, 0 F 

L T Sp 0 $A W, 0, M 0, W, P 0 PI 

;A w, 0 M 0 ;A w, 
FIGURE 4. Optical measuring techniques. (a )  +A-compensated differential interferometer. 
(0) Laser-differential interferometer with scanning mirror. ( c )  Laser-Doppler anemometer 

the phase shift of the two beams, induced by the integral density gradients, up to 
fractions of the light wavelength A.  A scanning mirror Sp enables the interferometer 
beams to be moved relative to the measuring object, making the determination of 
density profiles possible. 

We use the laser-differential interferometer in three different cases : 
(a)  Onset of steady convection in nitrogen. Very small deviations of the heat 

conduction profile must be registered in this case. 
(6) Transition from steady to time-dependent cellular convection. The onset of 

periodic density variations is registered by means of a fixed interferometer beam. 
This method, however, cannot be applied when analysing oscillation freauencies. As 
the flow becomes more and more three-dimensional, it is impossible for the integral 
density signal to give information about the change of local flow properties. 
Therefore, the periodic temperature change a t  a specific place is measured using 
thermocouples. 

(c) The third application deviates from its normal use. After removing the 
Wollaston prism W,, the set-up presented in figure 4 (b )  can be used as a light cut 
method. A light sheet is formed in the measuring area by moving the scanning mirror 
a t  a sufficiently high frequency. Then, by adding small particles to the fluid, i t  is 
possible, using long time exposures, to produce streak-line photographs which permit 
the flow to be visualized in a simple manner. 

Further details on the optical set-up and operation of differential interferometers, as 
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well as quantitative evaluation of interferograms, can be found in the publications 
by Kirchartz (1980), Oertel (1961), Oertcl & Buhler (1978) and Oertel & Oertel J r  
(1988). 

A spccial type of laser-Doppler anemometer described by Bossel, Hiller & Meier 
(1972) is used to measure local velocity. The very small velocities in convection flows 
cause the Doppler frequencies to lie typically in the range of 10 Hz to 10 kHz, with 
which a very low noise ratio is associated. The set-up shown in figure 4 (c) solves this 
problem by means of optical signal filtering. A Wollaston prism serves as beam 
splitting componcnt. The two beams polarized perpendicularly cross each other in 
the measuring volume. By observing the intersection of the laser beams through a 
combination of ;A plate and Wollaston prism W,, it is possible to detect two ;A 
shifted systems of interference fringes. Therefore, two complementary scattered light 
signals can be measured on both light detectors. If the two signals are subtracted, the 
amplitude of the Doppler signal will double, and the remaining scattered light 
elements and light fluctuation will virtually disappear. Wc werc able to measure 
velocities down to 5.10-6 m/s with this set-up. 

4. Onset of cellular convection 
First of all we will discuss the onset of cellular convection in horizontal boxes. Only 

in the case S = Oo does there exist a basic state of pure heat conduction, meaning 
without any motion, that can be described analytically by the linear heat conduction 
profile. In  figure 5 the calculated critical Rayleigh numbers are plotted against the 
normalized length hJh, (h,/h, = const = 4). The influence of increasing critical 
Rayleigh numbers with decreasing aspect ratio is known from earlier calculations of 
Catton (1970) and Davis (1967). Over a wide range our values are somewhat smaller 
than the corresponding results published by these two authors. One reason may be 
the higher number of trial functions used in our stability analysis, In any case the 
results of figure 5 agree very well with the measured critical Rayleigh numbers for 
some selected aspect ratios, among them the two geometries discussed in the present 
paper. 

I n  tilted boxes however there exists, below a supercritical Rayleigh number, a 
weak basic flow which must be considered as a three-dimensional flow in the case of 
closed boxes ; the basic state can no longer be described analytically. Therefore the 
onset of steady cellular convection was calculated following the iterative application 
of a combined finite-difference method and a Galerkin method, as described in 52.2. 
The results of these eigenvalue calculations are shown in figure 6 for a specified 
container geometry and two different Prandtl numbers. Thc critical Rayleigh 
number is plotted as a function of the angle of inclination, a t  which the basic state 
turns unstable. Basically, it is the straight rolls that  superimpose on the basic flow, 
whereby we have to distinguish between two types of rolls : transverse rolls lie with 
their axes perpendicular to the basic flow and, as a result of the container's chosen 
turning axis, arc identical with the rolls parallel to the shorter side of the box 
(solution for the case S = 0"). Longitudinal rolls orient themselves with their axes 
along the basic flow. I n  horizontal boxes, the rolls parallel tto the shorter side of the 
box seem to be the preferred solution, since they have the smallest eigenvalue (1817 
versus 1883 for the rolls parallel to the longer side of the box). 

In  the case of a weak basic flow (6 < la"),  the transverse rolls will retain the smaller 
eigenvalue, then constituting the preferred physical solution. At larger angles of 
indination (8  > 12O), the increasing shear effect of the basic flow forces the transverse 
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FIGURE 5 .  Critical Rayleigh number as a function of the aspect ratio hJh ,  with h,/h, = const. 

-. theory; 0. experiment. 

Ra - 
103 

Basic flow 
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FIGURE 6. Critical Rayleigh number in tilted boxes. Linear theory. Aspect ratio = 10:4.1 ; 
- _ _  , Pr = 0.71 ; -, Pr = 7.0. 

rolls to  reorient towards the longitudinal rolls, whereby the critical Rayleigh number 
increases progressively with increasing angle of inclination (the fact that a definite 
amount of shear is required to convert transverse rolls to longitudinal rolls when 
sidewalls are present is also known from other flow configurations e.g. Poiseuille flow 
heated from below, see Platten & Legros 1984). As a comparison. we present the 
value for infinitely extended fluid layers, where the critical Rayleigh number can be 
calculated by the simple relationship Ra, = 1708/cos S. 

Consequently, the value of the mitical Rayleigh number in the tilted box is 
determined by three factors : 

(i) Cellular convection is causod by the part g cosS of the gravitational 
acceleration, and so the limit case S = 90" constitutes an asymptotic value. 
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R U ,  

Only sidewalls considered 5505 
Infinitely extended fluid layer 4094 

Considering the basic flow 9401 

TABLE 1. Critical Rayleigh numbers. 8 = YOo, F'r = 7 . 0  

( i i )  The stabilizing influence of the lateral walls increases the Rayleigh number by 
a constant factor (k  = 1883/1708 for longitudinal rolls and an aspect ratio of 
10:4: 1 ) .  

(iii) Finally, the basic flow has an inhibiting influence on the onset of cellular 
convection, this influence strongly increasing at larger angles. This is clarified by the 
example S = 70" in table 1. I n  closed boxes, the basic flow already transports heat by 
convection between the isothermal walls, thus deferring the onset of cellular motion. 
Because of the lower Prandtl number, the convective transport of the basic flow is 
less marked in nitrogen than in water. The stabilizing influence on the development 
of cellular convection is correspondingly smaller. The extent to which the results of 
the linear stability theory agree with the experimental observations will be discussed 
in $7 .1 .  

As the first result of this paper we will emphasize that the stability analysis of 
cellular convection, under the influence of shear flows, is quite sensitive to the 
introduction of the correct basic state in the calculation process. 

5. Steady Rayleigh-Benard convection 
At the beginning of the next section we will return to the case of cellular convection 

in horizontal containers of intermediate aspect ratio and will discuss some important 
features of the three-dimensional eEects in the supercritical regime. The finite- 
difference-method test calculations have shown, that the numerical solutions may 
depend on the initial flow field distribution chosen at, the beginning of the 
calculation; here the experiment is a guide for the calculation. Wc chose the 
eigenfunctions of the critical Rayleigh number determined with the aid of the linear 
stability theory as initial distribution for the velocity and temperature fields. The 
amplitude of the initial distribution is fixed a t  approximately 1 %, of the value of the 
stationary final solution. The stationary solution is first calculated for a slightly 
supercritical Rayleigh number. From this result, it is then possible to  determine 
further solutions by slowly (quasi-stationary) increasing the Rayleigh number. 

Figure 7 presents the result of a calculation for Pr 9 1. The distribution of the 
vertical velocity component on the horizontal midlaycr ( z /h ,  = 0.5) is shown. Ten 
convection rolls with their axes parallel to the shorter side of the container were 
formed. The choscn geometry permits the assumption of a two-dimensional flow a t  
the centre of the measuring cell. I n  actual fact, however, noticeable velocity 
components, caused by buoyancy and inertial forces, dcvclop parallel to the rolls' 
axes, sol that the assumption of a two-dimensional flow can only bc partially fulfilled. 
The v component of the velocity vector already reaches 15 % of wmSx at the relatively 
low Rayleigh number Ra = 4000. The no-slip condition at t,he border influences the 
flow field over the lengthscale h,; and is particularly marked at the corners. The 
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FIGURE 7 .  Steady cellular convection. Ra = 4000, Pr + 1 ,  aspect ratio h,:h;h, = 10:4: 1 .  ( a )  
Distribution of the vertical velocity component w in the horizontal midlayer (z/hZ = 0.5). ( b )  
Differential intrrferogram with vertical beam separation (lines of equal vertical density gradients). 
Test fluid : silicone oil, Pr = 1780. (c) Differential interferogram with horizontal beam separation 
(lines of equal horizontal density gradients). 

calculated velocity amplitude and the Nusselt number approximately agree with 
two-dimensional calculation results. 

Figure 7 (b )  presents a comparison of experimentally obtained differential 
interferograms and interferograms reconstructed from numerical solutions. The 
interference fringes represent lines of constant vcrtical or horizontal density 
gradients. Comparison of the figures confirms that the numerical solution method, in 
the main, also correctly dcscribes the amplitude function and the structure of steady 
cellular convection. 

Figure 8 presents comparable results for a Prandtl number of Pr = 0.71. In 
agreement with experimental observations, a solution with 9 convection rolls was 
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FIGURE 8. Steady cellular convection in nitrogen/air. Ra = 4000, Pv = 0.71, aspect ratio 10.4'1. 
(a )  Distribution of the vertical velocity component w in the horizontal midlayer (z /h ,  = 0.5). (0) 
Measured and calrulated velocity profile w(z, y = 2, z = 0.5). --, numerical simulation: 0. 
measured values (LDA). 

calculated for Ra = 4000. Here, too, a comparison of a measured velocity profile (see 
figure 7 b)  shows that the flow amplitude of the single rolls is correctly reproduced. 
The amplitude function is somewhat shifted by the varying size of the border roll. 
One reason for this may bc that the perfectly conducting thermal boundary 
condition is only partially fulfilled in the experiment. 

Only the modification of the wavelength, which develops in discrete steps in the 
container as a result of the finite number of rolls, cannot be satisfactorily described 
by the numerical simulation. The initial distribution given by the eigenfunctions 
essentially determines the number of convection rolls calculated numerically. The 
number of cells corresponding to a given Rayleigh or Prandtl number must, 
therefore, be included as a parameter in the calculation. Rut a modification in thc 
number of cells does not take place as in the cxpcrimentally observed transition 
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Rayleigh numbers. One reason for this result may be the rathcr short computing 
time. In  fact, experiments in air showed that a modification in the number of cells 
is reached through total reorientation of the flow field. This process runs over a time 
interval of several minutes in the selected measuring cell with h, = 15 mm. However. 
even with the CYBER 205 vector computer, more than 30 hours CPU time would be 
required numerically to simulate a real time of. say. 5 minutes. This leads to the 
conclusion that the modification in the number of cells occurs in timescales which are 
an order of magnitude larger than the building-up time for a quasi-stationary 
solution. The numerical model calculation cannot reproduce this process with 
justifiable expenditure. 

The experiments are unequivocal. With increasing Rayleigh number, they show a 
decrease in the number of cells N in convection boxes. and thus an increase in the 
wavelength of the convection cells. The wavelength was determined by means of 
interferometrical measurements, or by the velocity profiles obtained through the 
LDA. Figure 9(a) shows a series of interferograms for the test fluid water (Pr = 7.0). 
The rolls can easily be identified with the aid of the interference fringes. Beginning 
with 10 rolls for slightly supercritical Rayleigh numbers, the number of cells will 
decrease to 7 before oscillatory convcction sets in (Ra,,, = 42000). 

As a summary of all experimental investigations, figure 9 ( b ,  c) shows, by the 
example of two different aspect ratios, the number of cells N or the wavenumber a 
as a function of the Rayleigh and Prandtl numbers. Smaller box geometries have a 
stabilizing effect on the transition process. The discrete wavelength increase takes 
place with media having larger Prandtl numbers at larger Rayleigh numbers. This 
is in full agreement with the theoretical results in infinitelx extended horizontal 
layers. Clever fk Busse (1978) were able to show that three-dimensional perturbations 
can lead to the so-called ‘skewed varicose instabilities’, with a greater effective 
wavelength. 

The transition to turbulence is described in $6. In  order to keep the calculation 
time within limits, these investigations were carried out using as an example a box 
with an aspect ratio of 4 : 2.1.  Since time-dependent solutions are largely determined 
by three-dimensional effects, we shall use this example to discuss once again a 
number of characteristics of three-dimensional steady convcvdion. A detailed 
discussion of three-dimensional convection in boxes can be found in the papers of 
Oertel (1980) and Kessler (1987). The main points, however, arc summarized later on 
in this article. Three longitudinal convection rolls are found in the 4 : 2 . 1  box a t  the 
onset of oscillatory convection (critical Rayleigh number Ra = 34000). 

Figure 10(a) shows a streak-line photograph of a cross-section through the 
convection rolls, and a numerically reconstructed streak-line picture obtained by the 
integration of particle paths from the calculated vclocity field. At first glance this 
picture gives the impression of an even flow. In fact, analysis of the particle paths in 
the middle cross-section shows that thcsc begin at the centre of the middle ccll and 
end in the corner vortices. An idea of the flow field’s three-dimensionality can be 
gained from the discussion of the velocity field’s ‘c component (velocity cwmponent 
parallel to  the axis of the cell). These velocity profiles for the areas of upward and 
downward motion, as well as those for the cell’s middle. are plotted in figure l O ( b ) .  
The lateral walls influence the development of three-dimensional flows in two wags. 
First, inertial forces induw an axial flow. whereby pressure gradients make the 
medium at the outer part of the roll flow towards the wall, and back in the vicinity 
of the roll’s axis (rotating flow over resting ground). Buoyancy forcxcs close to the wall 
support this effect in the case of perfectlj conducting latcral walls. Figure 1O(c) 
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FIGURE 9(a,b).  For caption see facing page.

shows plots of isotherms for a convection roll in the upward zone, in the downward
zone and also in the middle of the cell. The isotherms are clearly shifted towards the
border due to convective energy transport. However, local horizontal temperature
gradients develop as the temperature at the wall is kept constant by the effective
boundary condition. This causes an additional convective motion which is
superimposed on the cellular convection in the direction of the arrows. Since the
convection rolls represent motion in the (z, z)-plane, the w component of the velocity
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FIGURE 9. Wavelength of cellular convection in rectangular boxes. (a) Interferograms of steady 
cellular convection in water (Pr = 7.0). Aspect ratio = 10: 4: 1, Ra = 3200,6100,8600,42000. (b, c) 
Average wave number a and number of cells M ;  ---, silicone oil (Pr= 1780); water 
(Pr = 7.0);  -, air (Pr = 0.71) .  Aspect ratio = 4:2 :1  ( b ) ,  = 10:4: 1 ( e ) .  

vector can be considered as a measure of the flow’s three-dimensionality (see 
figure lob). The velocity profiles so represented result from the superposition of 
inertial and buoyancy forces. In  the middle of the convection roll, we were able to  
observe an inwards-moving flow, while in the upward and downward motion areas, 
as a result of an axial pressure gradient, the fluid is transported towards the walls. 
The bulgings of the profiles are caused by the buoyancy-induced flows in the domain 
of strong horizontal temperature gradients. Since time-dependent solutions are 
largely determined by the Prandtl number, it must be assumed that secondary flows 
induced by the inertial forces, and not time-dependent disturbances, significantly 
determine the stability of steady cellular convection. Two points should be 
emphasized concerning the steady solutions in rectangular boxes : the flow field is 
influenced by nonlinear effects even in the regime of small supercritical Rayleigh 
number, see e.g. the transition in the wavelength and wavenumber. Further, in 
essential parts, the flow is highly three-dimensional and is characterized by a 
complex structure. Both features will significantly determine the transition to time- 
dependent solutions as will be shown in the following section. 

6. Transition to oscillatory convection 
In this section, we restrict ourselves to the 4 :2 :1  box (in order to keep 

computation time within limits) and to the case of a horizontal orientation of the 
box. 

In  experiments with air, no oscillations could be observed in the four-roll regime, 
since transition to a three-roll regime already took place a t  a Rayleigh number of 
24000. This solution becomes unstable to time-dependent disturbances a t  a critical 
Rayleigh number of Ra = 34000, which agrees with the calculated onset of 
oscillations within the experimental error. 

I n  the numerical calculations the number of cells is prescribed as input parameter 
due to the difficulties discussed in $ 5 .  According to the experimental observations the 
calculations are continued with a three-roll configuration for Rayleigh numbers 
higher than 24000. 

Figure 11 presents the non-dimensional maximum vertical velocities as a function 
of the Rayleigh number. A comparison by Jager (1982) of the calculated non- 
dimensional heat flux and the maximum vertical velocities, with measurements and 
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FIGURE 10. Steady cellular convection. Ra = 30000, Pr = 0.71, aspect ratio = 4: 2 :  1. ( a )  L treakline 
photograph (Jager 1982) and numerically integrated particle pathes (plane y / h ,  = 1 .O) .  ( b )  1' -  

component of the velocity field at z = 1.4 (a,rea of upward mot.ion), I(: = 2.0 (middle of t h r  cell) and 
x = 2.6 (area of downward motion). (c) Isotherms to figure 9 ( h ) .  



Thrw-dimmsional thermal cdlular convwtion in redangular boxvs 271 

0 100 200 300 
Ral 1 O3 

FIGURE 1 1 .  Vertical velocity component wmax(z. y, z = 0.5). Aspect ratio = 4 : 2 : 1 .  -, theory. 
Experiment: 0, air. h, = 39.5 mm; 0, air, h, = 24.0 mm; A, water, h, = 8.4 mm. (Jager 1982). 

otherwise published data, showed good agreement over the whole Rayleigh number 
range up to Ra = 70000, using a finite-difference method. I n  the range of Rayleigh 
numbers from 120000 to 200000, the application possibilities of the one-equation 
model of Prandtl and Kolmogorov, and in the range Ra > 200000, those of the 
(k, €)-model, had been proven earlier using a finite-difference method. Nevertheless, 
the turbulence model applied could not reflect the flow structure and the correct 
oscillation frequencies. 

We now concentrate on the transcritical transition regime to oscillatory 
instabilities and discuss the experimentally and theoretically determined Fourier 
spectra. Figure 12 shows the results of Fourier analysis in the form of experimental 
frequency spectra for different Rayleigh numbers, using the example of air as the test 
medium. First, the oscillations begin with a fixed frequency fi. A second and a third 
frequency are added a t  a Rayleigh number of 50000. These are superimposed 
modulations of the original oscillations determined by the geometry of the box. With 
increasing Rayleigh number, the quasi-periodic regime of the route to turbulent 
convection is determined by the mode-locking k fi + Ifi +mf3 with integers k, I, m of 
the higher harmonics and their combination harmonics The  experiment shows that. 
a t  the Rayleigh number 52300, the oscillatory instability is again determined by the 
initial frequency fi. With increasing Rayleigh number, there appear the sub- 
harmonics of fi and fi, the period-doubling mechanism and the higher harmonic. 
frequencies. The discrctc mode-locking frequencies, dctcrmincd by the Reynolds 
equations, can also be experimentally demonstratcd in thc turbulent regime. Similar 
results have been obtained by Gollub, Benson & Steinmann (1980). A quantitative 
comparison is however not possible because of the different geometry they have 
chosen in their experiments. The Galerkin method proved its advantage for the 
calculation of three-dimensional oscillatory convection. We assume symmetry of the 
flow with respect to the middle plane (y = 0 ) ,  a fact which results in a limitation of 
the possible bifurcation solutions. The calculatcd oscillatory frcquency fi (figure 13) 
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FIGURE 12. Experimental power spectra of the oscillatory  convection in air
Aspect ratio = 4 : 2 1. (J8ger 1982).
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and the structure of the oscillatory convection are found to be in good agrcement 
with experiments as discussed by Kessler ct  al. (1983). The numerical simulation 
demonstrates that  changes of Prandtl number have a much stronger influence on thc 
critical Rayleigh number of oscillatory convection, its frequency, structure and 
evolution in time and space than changes of the thermal boundary conditions a t  the 
sidewalls. The oscillations for air are completely different from those for water. For 
Pr = 0.71, the calculations exhibit large periodic contractions of the rolls, while for 
Pr = 7, the maximum amplitude of oscillation moves along the otherwise almost 
permanent rolls. 

Going back to the frequency spectra of figure 13, in the comparison with 
experimentally determined frequency spectra, it can be noted that, for the basic 
frequencies f, and fi, the subharmonics and higher harmonics are correctly 
reproduced, but the mode-locking details of the different frequencies cannot be 
resolved with the given numerical resolution and symmetry conditions. 

7. Influence of shear flows 
Under the influence of shear flow, caused e.g. by an inclination of the test box. the 

problem of thermal convection becomes more complex. The subcritical basic state is 
characterized by a single-roll convection flow, which influences the stability problem 
for onset of steady cellular convection with increasing angle of inclination. The 
supercritical convection itself results in a superposition of this basic flow and a 
cellular structure which makes the flow field highly three-dimensional. 

7.1. Onset of stationary cellular convection 

In order to test the stability calculations, discussed in $4, the onset of stationary 
cellular convection was experimentally investigated using interferometrical meas- 
uring methods. The characteristic stability behaviour (figurc 14a ,  b )  can be 
discussed in connection with example measurements made in silicone oil (Pr = 1780, 
S = 15"). On the left part of figure 14 ( a )  is shown the (x, z)-plane, half the measuring 
cell consisting of an elementary diagram and half of an interferogram. In the right- 
hand column, we can see the short side of the box. The beam separation is horizontal, 
with reference to the measuring cell ; thus a similarity between the interference 
fringes and streamlines can be derived in a slightly supercritical range. 

The first interferogram describes the basic state. The fluid moves downwards a t  
the colder upper wall and upwards at the warm lower wall. The fringe distribution 
shows that the simple assumption of the linear heat conduction profile in the basic 
flow fails at the vertical walls. In  the box the solution is marked by an inhomogeneous 
v and T distribution, that  is, the tcmpcrature and velocity fields not only depend on 
z but also on x and y .  

The second interferogram shows the development of the first convection roll a t  the 
endwall, which already occurs in the range of subcritical Rayleigh numbers. The 
reason lies in the modified boundary condition, as compared with the classical 
stability theory. The basic flow causes both an upward and a downward motion at 
the vertical walls, forming a single convection roll. The fluid particles carry energy 
from the basic flow, facilitating an earlier onsct of cellular convection near the 
endwalls. In  a similar way subcritical motion can be induced by horizontal 
temperature gradients near the lateral wall (see e.g. Daniels 1977). One convection 
roll after the other now develops stepwisc, beginning at the sidewalls and moving 
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FIGURE 14. Steady cellular convect,ion in silicone oil, Pr = 1780. ( a )  differential intrrferogranis. 
S = 15". Ra = 1250. 1690.2000. 2240. 2850. ( b )  Clriticd Rayleigh numbers in a tilted box. aspect 
ratio h,:h,:h, = 10:4: 1 .  Rn,(O") = 1820. 
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towards the middle of the box. Consequently we do not observe a simultaneous onset 
of instability, as in the case of horizontal boxes, but because of the three-dimensional 
basic state we see an inhomogeneous development of cellular convection. In the third 
intcrferogram, a state is reached wherc the box is filled with convection rolls This 
occurs approximately a t  the critical Rayleigh number predicted by the linear 
stability theory. Since the basic flow requires an upward motion at one of the 
endwalls and a downward motion at the other, only an odd number of cells - 9 in this 
particular case ~ is possible. As the interferogram on the right-hand side shows, a 
weak development of longitudinal rolls can already be recognized. The basic flow 
supports those rolls rotating in its own direction, but has a shear effect on those that 
rotate in the opposite one. This is unfavourable from the energetic point of view, and 
consequently, we can see how, with increasing Rayleigh number, the number of 
transverse rolls will slowly begin to decrease, doing so first of all in the middle of the 
box. At the same time, longitudinal rolls begin to develop along the basic flow, which 
becomes stronger. At a Rayleigh number of 2850, we finally find a state in which only 
longitudinal rolls are superimposed on the basic circulation. The flow made up of 
u, w and v , w  motions is now highly three-dimensional, with single fluid particles 
moving in complex spiral paths. 

The results of all single tests with silicone oil are summarized in the stability 
diagram in figure 14. The Rayleigh number is normalized a t  the critical value 
necessary for the onset of transverse rolls when 6 = 0", Ra,(O") = 1816. The angles of 
inclination 6 = 0" to 90" are plotted on the x-coordinate. Three domains can be 
recognized in the stability diagram. A complex stability behaviour can be observed 
from 0" to 30". Transverse rolls appear close to  the wall even at subcritical Rayleigh 
numbers, being identical with the rolls parallel to the shorter side of the box. These 
rolls appear as a result of basic flow's modified boundary conditions. The next curve 
is, in our view, the real stability curve ; cellular convection starts to be present in the 
entire box here. The values thus determined arc comparable with the theoretical 
predictions as shown in figure 6 (for small angles there is only a weak influence of the 
Prandtl number). With increasing Rayleigh number, the basic flow gains influence 
and forces the roll structure to reorient itself. Within a limited paramcter range, 
there is a practical superposition of two types of rolls. This state is stable, that  is, the 
rolls will remain unchanged for any time interval, as long as the Rayleigh number is 
not modified. Only when the basic flow has reached a certain amplitude do pure 
longitudinal rolls develop in the same way as from infinitely extended layers. This 
flow picture also characterizes the second range, from 30" to 65". Finally, the critical 
Rayleigh number increases steeply with increasing angle of inclination. The cellular 
convection will lose significance to the same extent as the basic flow increases in 
amplitude. Above S = 65", it is no longer possible to detect any convection rolls on 
the interferogram. The convective transport of energy is taken over solely by the very 
strong basic flow. 

Further results concerning the onset of cellular motion are included in figures 17 
and 19 for the Prandtl numbers 0.71 (air) and 7.0 (water). After comparing with the 
thcoretical predictions we can summarize the results as follows the subdivision into 
transverse and longitudinal rolls, depending on the angle of inclination. is reflected 
satisfactorily. For small angles, the value of the critical Rayleigh number agrees, 
within the experimental error, with theoretical predictions. Hou ever, for angles of 
6 > 50°, there deviations appear which reach 60% in the extreme case. In general 
terms, we can say that the critical Rayleigh number determined experimentally is 
higher. One reason for this may be found in a systematic error measurcmrnt causcd 
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FIGURE 15 (a-c). For caption see facing page. 
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FIGURE 15. Three-dimensional convection in tilted boxes. Aspect ratio = 10:4: 1. Pr = 7 0. 
Distribution of the vertical velocity component in the plane z = 0.5. ( a )  S = 5". Ra = 3010; 
( 6 )  S = 30", Ra = 3464; (c) 6 = 50", Ra = 4670; ( d )  S = 60°, Ra = 6000. 

by the application of measuring methods of different sensitivity. The error is due to 
the fact that only a finite flow amplitude can be observed, which prevents 
registration of the first infinitesimal deviation of the basic state. The experimentally 
determined Rayleigh number will, therefore, always be somewhat higher, increasing 
with decreasing sensitivity of the interferometer used. An additional effect appears 
above 6 = 50". The entire flow is formed by the superposition of basic circulation and 
cellular convection. The stability calculation gives no information about the ratio of 
amplitude of the two flow parts. The interferograms taken during the experiment 
show that the flow part with cellular convection decreases continually with 
increasing angle of inclination and stronger basic flow. Three-dimensional calculation 
of the supercritical flow conditions has also confirmed this observation. This 
demonstrates why, above 6 = 6 5 O ,  cellular structures can no longer be observed in 
what has now become a very strong basic flow. Therefore, in the case of moderate 
aspect ratio containers, the eigenvalues obtained with the linear stability theory 
have only theoretical significance for large angles of inclination, giving no meaningful 
information about the physical facts. 

7.2. Supercritical steady solutions 

In  order to reach a better understanding of the spatial structure of convection in 
tilted boxes, a calculation of the supercritical flow field was carried out for a number 
of selected examples. The results are presented in figure 15 as the distribution of the 
vertical velocity component in the plane z/h, = 0.5. The Prandtl number was fixed 
a t  the value of 7.0. In  addition, the component of the Rayleigh number in the z -  
direction was kept constant a t  Ra, = 3000, which means that the actual Rayleigh 
number changes with the angle of inclination 8, following the relation R a  = 3000/ 
cos 6. 

When the angles of inclination are small and a weak basic flow is present, the 
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0" 20" 40" 
6 

60" 

FIGURE 16. Smplitude of cellular convection and basic flow in inclined boxes. Pr = 7.0. aspect 
ratio = 10:4: 1. -, w(x = 5 , y  = 2 ,  z = 0.5); -- - ~ ,  W(T = 9 . 7 5 . ~  = 2 ,  z = 0.5). 

transverse rolls have the smaller cigenvalue and are thus the preferred solution 
(figure 15a). However, a marked deviation from the roll structure can already be seen 
at the centre of the box. This suggests the reorientation to longitudinal rolls which 
takes place at larger angles of inclination. This solution, which results from the 
superposition of the basic flow and four rolls lying perpendicularly to it. is 
represented in figure 15 ( b )  for S = 30". If the angle of inclination is further increased, 
the intensity of the basic flow will increase steadily, while the amplitude of the 
cellular convection will decline noticeably. At S = 50°, partial cellular convection can 
still be detected in the middle of the box. From S = 60"-65", there remains only a 
strong basic circulation, which controls the entire energy transport (figure 15d). 

By way of example, the two representative velocity profiles in figure 16 show once 
again how basic flow and cellular convection vary with increasing angle of 
inclination. w (x = 9.75, y = 2,  z = 0.5) is close to the upper endwall and serves as a 
measure of the basic flow's intensity. w ( x  = 5, y = 2 , z  = 0.5) lies in the area of 
downstream motion right in the middle of the box and characterizes the part with 
cellular convection. Upwards of S "N 45", the amplitude of the cellular convection 
decreases strongly, and from S = 65", there is only a basic flow left. In  fact, a 
modulation w(y) is still detectable in the middle of the box at S = 65", bu t  the 
amplitude reaches only 0.25 % of thc original convection rolls. The results make the 
differences between the experimental and theoretical investigations clear. Consistent 
with the above, an eigenvalue is calculated for the angle of inclination S = 65" (see 
figure 6), as the numerical results still show a periodic distribution w(y). but with a 
negligibly small amplitude. The fact that the cellular convection cannot be measured 
in this range, even with sensitive optical measuring methods, is also understandable. 
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47 Time-dependent convection 

Basic flow 

0" 30" 60" 90" 
6 

FIGURE 17. Stability diagram in air. Pr = 0.71. aspect ratio = 10:4: 1 .  Experimental results. 

7.3. Onset of time-dependent convection 

Another important problem is the onset of time-dependent solutions, which we shall 
discuss using the experiments' stability diagrams for water (Pr = 7.0) and air (Pr = 

0.71). Figure 17 shows the stability diagram for nitrogen. The lowest curve indicatcs 
the onset of stationary cellular convection in a simplified form (the appearance of 
subcritical motions for small angles of inclination is omitted). vC7c will now 
concentrate on the transition curves of the time-dependent solutions. I n  a horizontal 
box, oscillatory convection sets in a t  a Rayleigh number that is about seven times 
supercritical. A wave is hereby superimposed on the rolls in the axial direction, 
causing periodic variations in the flow field. If we incline the box slightly, the 
transverse rolls will become unstable at a much lower Rayleigh number. The shear 
forces caused by the basic flow induce time-statistical reorientations of the upward 
and downward motion areas. At angles of inclination of S > lo", the rolls will orient 
along the basic flow, avoiding a shear effect. This has an immediate stabilizing 
influence on the onset of time-dependent solutions. From S =  15" on, oscillatory 
convection sets in at a lower Rayleigh number level, which means that, here too. the 
basic flow has a clear destabilizing effect on the convection rolls in relation to time- 
dependent solutions. If we define a modified Rayleigh number as Ra* = Ra cosS, 
oscillations for the angle range of 15" to 60" set in a t  an almost constant value of 
Ra* = 2900 f 100. Obviously, only the z-component of the gravitational acceleration, 
gz = g cos 6, is important for the transition to time-dependent solutions in this angle 
range. 
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103 

Time-dependent Transverse travelling 

0" 30" 60" 90" 
6 

FIGURE 19. Stability diagram in water, Pr = 7.0, aspect ratio = 10:4: 1 .  Experimental results. 

Raosc = 3700. In  order to shorten the transition phase and save computing time, the 
oscillations are calculated for a slightly supercritical Rayleigh number of Ra = 4500. 

The temporal change of the flow structure is illustrated by the distribution of 
isotherms in the plane z = 0.5 (figure 18). The momentary isotherrn field was drawn 
over a period of oscillation taking six different points in time. A wave can be clearly 
recognized, which moves along the axes of the rolls, causing a periodic displacement 
of the upward and downward motion areas, as well as a modulation of the flow's 
amplitude. When the cross-section of the rolls becomes smaller, the flow's amplitude 
enlarges, and conversely, when it spreads, the flow's amplitude becomes smaller. This 
agrees with experimental observations carried out with the aid of streak-line 
pictures. The dimensionless frequency is 2.67, deviating 8 YO from the experimentally 
determined value (f,,, = 2.45). Altogether, we can say that the three-dimensional 
finite-difference method, in the main, correctly describes the experimentally observed 
behaviour of oscillatory convection. Water was another of the test fluids 
investigated ; the corresponding results are summarized in figure 19. Similarly to the 
results already discussed for silicone oil and nitrogen, a distribution among 
transverse and longitudinal rolls was also found in water. The onset, of oscillatory 
convection for S = 0" is first measured a t  a Rayleigh number of Ra = 42000. 

Here, too, we have established that, for angles of inclination of up to S = 35", the 
basic flow has an increasingly destabilizing effect on the onset of time-dependent 
solutions. However, the effect is not as marked as in nitrogen. Above this angle of 
inclination, the critical Rayleigh number required for the onset of time-dependent 
convection increases steeply again. This effect is influenced by the mutual action of 
the z and x components of the gravitational term. The influence of cellular convection 
will prevail at small angles of inclination. The perturbations which induce the 
transition to time-dependent convection are induced by the basic flow. At larger 
angles, it is the basic flow that prevails, being even extremely stable against time- 
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FIGURE 20. Transverse travelling waves. Ra = 4.3 x lo5, Pr = 7.0, 8 = 70'. aspect ratio = 10 :4: 1. 
(a) Differential interfwogram. ( b )  Evaluated isotherms lines with T = 1.0.0.9.0.8.0.7. 0.6, 0.5. 0.4. 
0.3. 0.2, 0.1, 0. 

dependent perturbations. From S = 60" on, cellular convection can no longer be 
measured. A steady basic circulation is only present up to a Rayleigh number of 
1.8 x lo5. This basic circulation becomes unstable above the plotted curve in the form 
of transverse travelling waves. 

These transverse travelling waves can be considercd as a shear instability. After a 
build-up distance of x/h, = 4-8. and depending on the angle of inclination, waves 
develop in the boundry layers with a phase velocity of about the order of magnitude 
of the maximum flow velocity. When the flow deflects at the endwalls. the waves die 
out, developing again at the opposite side after a ncw build-up distance. The 
appearance of the transverse rolls u as measured with the highly sensitive laser 
difierential interferometer, as the amplitude of the waves is extremely small vcry 
close to the box's vertical walls and cannot be measured wil h a total-field differential 
interferometer. 

Above 6 = 60". we were able to observe a periodic. oscillation of the tempcrature 
field at the critical point indicating the onset of transverse waves. The value of the 
critical Rayleigh number at S = 90" is 6.7 x lo5 and may bc directly compared with 
the predictions made by Elder in 1965. For the casc of an almost plane flow, Elder 
made an estimation of the form Ra = 8 x 10'P~r~/H,, which leads to a value of 
1.97 x lo6 for the present container and the test medium watcr ( P r  = 7.0). Our own 
measurements lic considcrably bclow this value, in spite of the stabilizing cffcct of the 
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sidcwalls. We suspect that the first onset of transverse rolls could not be observed 
with the visualization methods used until now and that, therefore, the values of the 
critical Rayleigh numbers were too high. 

Figure 20(a )  shows an interferogram as cut out from the measuring cell. At the 
cold wall, the curvature of the interference fringes allows detection of the existence 
of waves in the temperature boundary layer, whereas a t  the warm wall, after the 
deflection a t  the sidewalls, the boundary layer remains laminar a t  first. A 
quantitative evaluation of the interferograms gave the isothermal distribution 
presented in figure 2 0 ( b ) .  

8. Discussion and conclusions 
The present paper reports a combined experimental and theoretical investigation 

of three-dimensional convection in horizontal and tilted boxes of' moderate aspect 
ratio. 

For the case 6 = O", the linear stability theory describes the onset of steady cellular 
convection, in agreement with experimental observations. Special attention must be 
paid to a careful selection of the trial function for the series expansion of the 
unknown functions u and T .  In  tilted boxes, however, the stability problem becomes 
much more complicated, because of the highly inhomogeneous basic state, which 
itself is a three-dimensional flow. The novel aspect of this work is the combination of 
a Galerkin method and a finite difference scheme in solving the stability problem, a 
procedure which is undoubtedly necessary for the aspect ratios used in our 
investigations. There are some fundamental differences between the stability 
behaviour of cellular convection in tilted and horizontal boxes. First, subcritical 
motion arises in the neighbourhood of the lateral walls comparable to  the case with 
a small heat flux through the sidewalls (see Daniels 1977), but with a significantly 
higher intensity. 

Depending on the aspect ratio, transverse rolls are the preferred solution for small 
angles, a fact which is not mentioned in earlier published works, e.g. of Hart (1971). 
The stability analysis correctly describes the existence of transverse and longitudinal 
rolls and the transition angle between these two modes. Finally the Prandtl number 
is introduced in the stability problem by the coupling mechanism between the basic 
flow and cellular convection. Thus the critical Rayleigh numbers show a weak 
dependence on the Prandtl number. Our own results are compared with the 
publication of Hart (1971), one of the first systematic investigations of convection 
flow and stability phenomena in inclined boxes. Although he used large aspect ratio 
geometries (h, : h, : h, = 25 : 12 : 1 and 37 : 17 : 1) the essential parts of his results are 
qualitatively confirmed by our investigations. On the other hand, there are 
remarkable details which are different and which underline the influence of the 
lateral walls and of nonlinear effects: 

(i) The rolls parallel to the shorter side of the box do not disappear immediately 
when the box is inclined some degree from the horizontal position. 

(ii) The appearance of meanders on the longitudinal vortices before unsteadiness 
occurs is obviously suppressed by the influence of the lateral walls. 

(iii) The transition angle between cellular convection and a single roll Configuration 
is shifted to smaller values with decreasing aspect ratio. The measured transition 
angle of 6 = 65" agrees with the result of Arnold, Catton & Edwards (1976), who 
published a relationship between this angle and the aspect ratio by means of heat 
transfer measurements. 
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(iv) The transvcrse travelling waves exist a t  significantly smaller Rayleigh 
numbers than observed in the experiments of Hart  and in the relationship given by 
Elder (1965). This relationship neglects the three-dimensional effects in the basic 
flow, which obviously has a destabilizing effect on the transition to travelling 
waves. 

Finally, we will emphasize that the steady and time-dependent solutions of 
cellular convection in boxes of intermediate aspect ratio is sensitively influenced by 
the lateral walls. 

Lct us return to thc supercritical convection in horizontal boxes. One of the most 
interesting features of cellular convection is the increase of the wavelength, that  is 
in a closed box, a decrease in the number of cells to higher Rayleigh numbers. A great 
number of published experimcntal observations, including the results presented in 
this paper. unequivocally show this effect. The transition Itayleigh numbers, which 
sensitively depend on the Prandtl number and the aspect ratio, are reproducible in 
a great number of experimental runs, assuming the same initial conditions. Although 
the numerical simulations of thc steady solutions reflect the mean features of the flow 
correctly, e.g. the flow amplitude and flow structure and also integral properties such 
as the Nusselt number, i t  was not possible to calculate transitions in the number of 
cells. Similar results are reported by other authors. Upson et al. (1983) attempted in 
vain, by using different perturbations of the temperature field, to force a bifurcation 
from a three- to a two-cell configuration as was observed in the experiments of 
Maurer & Libchaber (1979). 

This result is surprising, because other complicated three-dimensional reorien- 
tations of the flow structure are reproduced with considerable agreement to the 
experiments. One example, presented in this paper, is the transition from transversal 
to longitudinal convections rolls in tilted boxes (see figure 15). What is the reason for 
this contradiction Z Our experiments in air indicate that the transition in the cell 
number is characterized by a long-time transient reorientation of the whole flow field, 
needing several units of the thew-ma1 diffusion time. The experiments of Kolodner 
et al. (1986) with water as the test fluid can be interpreted in a similar way. But even 
with the use of vector computers it is impossible to  simulate such a transition, for 
which many hours of CPU-time could bc needed. 

For the simulation of the time-depcndent solution, the number of cells observed in 
the experiment must be given as input parameters since the critical Rayleigh 
number, for the onset of oscillations as well as the dynamical behaviour, is a function 
of the subcritical steady solution (see e.g. Clever & Busse 1974). In this way the 
critical Rayleigh number and the osdlation frequency is correctly reproduced and 
in good agreement with the experiments of Jagcr (1983). Further, the results 
obtained with the finite-differcnce method agree in the main features with the 
publication of Kessler, who used a Galerkin method and applied it to a box with an 
aspect ratio of 4 . 2  : 1 ; however some difference must be mmtioned, concerning the 
dynamical behaviour of the oscillatory convection. In thc simulations of Kessler, the 
axis of the middle roll (in a three-roll configuration) remains fixed through an 
oscillation period. However the finite diffcrence calculations yield an oscillation of 
this axis similar to the axis of the two outer rolls. Repeating the experiments of Jager 
we could indeed observe, that  the axis ofthe centre roll oscillates in a way prescribed 
by the finite-difference method. It seems, that  the symmetry condition that Kessler 
imposed on his method led to  some restrictions in the dynamical behaviour It is 
surprising that this has no influence on thc oscillation frequency. 

Our calculations confirm the statement of Kessler, that for a box of intermediate 
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aspect ratio the thermal boundary conditions only slightly influence the onset of 
oscillatory instability as well as the frequency and the dynamical behaviour. 
although there are noticeable modifications in the spatial flow structure. More 
important are the nonlinear effects characterized by the Prandtl number. It should 
be mentioned, that  this statement is not generally valid for the whole range of aspect 
ratios. Recent calculations of the authors (Kirchartz 1987) in cubical boxes. heated 
from below. demonstrate, that  with decreasing aspect ratio, i.e. with increasing 
influence of the lateral wall, the above conclusion can be changed drastically. The 
dynamical behaviour of the time-dependent convection, meluding the critical 
Rayleigh numbers, are mainly influenced by the thermal boundary condition 
(perfectly conducting or adiabatic), while the influence of the l'randtl number is of 
second order. 

As a result of our work, we should emphasize that the transition to a time- 
dependent solution is largely determined by the three-dimensional effects Inertial 
and buoyancy forces cause marked spatial flow movement not only in the immediate 
neighbourhood of the lateral walls. but also influence the whole flow field. Thus the 
oscillatory convection could only be calculated with the aid of a three-dimensional 
model. The critical Rayleigh number, the oscillation frequency and thc qualitative 
picture of the flow pattern agree with the experimental observations. 
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